

20th October 2023

Copyright for this document belongs to K2n Ltd

Contents

1	Overv	iew	3
	1.1 k	2n energy targets	4
	1.1.1	School Design Targets	4
	1.1.2	Other Buildings Design Targets	4
	1.2 l	Itilities design suggestions	5
	1.2.1	All- electric buildings	6
	1.3 (ommissioning Stage (or the SOAK Test)	7
	1.3.1	The SOAK Test Checklist	8
	1.4 F	roviding robust data to K2n	9
	1.4.1	Meter data	9
	1.4	1.1 Metering: Design stage:	9
	1.4	1.2 Metering: Construction stage:	10
	1.4	1.3 Metering: Commissioning and operation stage:	11
	1.4.2	Sensor data	12
	1.4	2.1 Sensors: Design stage:	12
	1.4	2.2 Sensors: Construction stage:	13
	1.4	2.3 Sensors: Commissioning and operation stage:	14

1 Overview

This document is split into four sections. These cover:

- Energy targets
- Initial services design and the data collection process for meters and sensors.
- Commissioning stage
- Providing robust data

The procedure for storing and sending the collected data is identical for both meters and sensors, but the setup requirements for a robust system are different for each.

The basis of the K2n methodology and platform is that operational data is only useful if it is trusted and informs actions. If there is uncertainty about its accuracy, then action is unlikely to follow.

1.1 K2n energy targets

The overarching needs for the energy data provided to K2n are that it must:

- Allow confirmation of the achieved performance against the end use and overall targets.
- Be robust enough to withstand challenge e.g. some meter redundancy should be included.
- Inform the various parties (occupants, contractors, clients) where the energy is going so that opportunities for improvement are clear along with who might take the actions needed to achieve those improvements.

1.1.1 School Design Targets

For schools, K2n currently conform to the published Department for Education End Use Intensity Design Targets in their 2017 to 2021 Output Specifications. This is to avoid complicating contractual arrangements in this sector. The relevant targets for contracts signed before and from November 1st, 2021 are shown in the tables below:

017 and 2019 Design Energy Targets														
		Table :	Table 2 Energy Weighting Factors									Targets		
Category	Description							Energ Weig Facto	gy hting pr*	3.2.2.1 To meet the EUI Targets, the energy model shall have energy end use for school per m ² of GIFA (kWh/m2) excluding unheated (transition spaces). [PM_40_20]				
Electricity	includes main and power an	ns electr nd renev	icity, ele vable er	ectricity lergy	from con	nbined he	at	1.0		3.2.2.2 The following EUI values define the minimum standards for New Building(s) and shall be achieved before the application of renewable technology. [PM_40_20]				
All fuels	includes, gas	s, oil, and	biofue	s				0.4						
All thermal	includes geol	thermal.	district	heat and	d heat fro	om combi	ned	0.5			School Type	Energy Use Intensity	Units	
An inemnal includes geometrial, district real and near from complined 0.5						010				(mmmum)				
The energy	/ targets are gu	loted bas	sed on t	he Oper	rational H	lours deta	ailed in S	Section	n 0.		Primary School	52	kWh/m ²	
07	0										Secondary School	67	kWh/m ²	
											SEN D	52	kWh/m²	
											– Tab	e 1 Energy Use Intensity Targe	ets	
								-						
Type Electrical equiv	Tabl	e 3 Annua Heating 21	al Design Hot Water 4	Energy Small Power 10	Targets - Lighting 13	Primary Fans and Pumps 7	Cooling 1	Lifts 1	Total 57	17				
Type Electrical equiv Allow 4 kWh/m	Tabl ivalent (kWh/m²) m² for building rela	e 3 Annua Heating 21 ated service	al Design Hot Water 4	Small Power 10	Targets - Lighting 13	Primary Fans and Pumps 7	Cooling 1	Lifts 1 Total	Total 57 61	17				
Type Electrical equin Allow 4 kWh/m	Tabi ivalent (KWh/m²) m² for building rela	e 3 Annua Heating 21 ated servic	al Design Hot Water 4	Energy Small Power 10	Targets - Lighting 13	Primary Fans and Pumps 7	Cooling 1	Lifts 1 Total	Total 57 61	17	Basanster	Valua	Usite	
Type Electrical equit Allow 4 kWh/m	Table ivalent (KWh/m²) n² for building rela Table	e 3 Annua Heating 21 ated servic 4 Annual	Hot Hot Water 4 Design F	Energy Small Power 10	Targets - Lighting 13 argets - Se	Primary Fans and Pumps 7 econdary	Cooling 1	Lifts 1 Total	Total 57 61	17	Parameter	Value	Units	
'ype Electrical equit Allow 4 kWh/m ype	Tabi ivalent (kWh/m²) n² for building rela Table	e 3 Annua Heating 21 ated servic 4 Annual Heating	Al Design Hot Water 4 Design I Hot	Small Power 10	Targets - Lighting 13 argets - S Lighting	Primary Fans and Pumps 7 econdary Fans and	Cooling 1 Cooling	Lifts 1 Total Lifts	Total 57 61 Total	17	Parameter Heating	Value 8	Units kWh/m²	
ype Electrical equit Allow 4 kWh/m ype	Tabi ivalent (KWh/m²) m² for building rela Table	e 3 Annua Heating 21 ated servic 4 Annual Heating	Hot Water 4 Design I Hot Water	Small Power 10 Energy Tr Small Power	Targets - Lighting 13 argets - So Lighting	Primary Fans and Pumps 7 econdary Fans and Pumps	Cooling 1 Cooling	Lifts 1 Total Lifts	Total 57 61 Total	17	Parameter Heating Hot Water	Value 8 5	Units kWh/m² kWh/m²	
ype Electrical equiv Allow 4 kWh/m ype Ilectrical equiv	Table ivalent (kWh/m²) m² for building rela Table valent (kWh/m²)	e 3 Annua Heating 21 ated servic 4 Annual Heating 20	Al Design Hot Water 4 Nes Design B Hot Water 4	Energy Small Power 10 Energy To Small Power 25	Targets - Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling	Lifts 1 Total Lifts	Total 57 61 Total 71	17	Parameter Heating Hot Water Internal lighting	Value 8 5 8	Units kWh/m² kWh/m² kWh/m²	
ype Electrical equin Allow 4 kWh/m ype Electrical equiv Mow 4 kWh/m	Tabi ivalent (kWh/m²) m² for building rela Table valent (kWh/m²) n² for building relat	e 3 Annual Heating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 Design F Hot Water 4 S	Energy Small Power 10 Energy Ta Small Power 25	Targets - Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling 1	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and gnumps	Value 8 5 8 5	Units kWh/m² kWh/m² kWh/m²	
ype Electrical equin Allow 4 kWh/m Jectrical equin ullow 4 kWh/m	Table ivalent (KWh/m²) m² for building rela Table valent (KWh/m²) n² for building relat	e 3 Annual Heating 21 ated service 4 Annual Heating 20 ted service	Al Design Hot Water 4 ees Design B Hot Water 4 es	Small Power 10 Energy T Small Power 25	Targets - I Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling 1	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling	Value 8 5 8 8 5 0	Units kWh/m² kWh/m² kWh/m² kWh/m²	
ype Electrical equin Allow 4 kWh/m ype Electrical equiv	Table ivalent (KWh/m²) m² for building rela Table valent (KWh/m²) n² for building relat	e 3 Annual Heating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 Nes Design I Hot Water 4 95	Small Power 10 Energy T Small Power 25	Targets - Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts	Value 8 5 8 5 0 1	Units kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²	
ype Electrical equit Allow 4 kWh/m ype Electrical equity Allow 4 kWh/m?	Table ivalent (kWh/m²) m² for building rela Table valent (kWh/m²) m² for building relat	e 3 Annual Pleating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 Design B Hot Water 4 25	Energy Small Power 10 Energy T Small Power 25	Targets - Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling 1	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts Building related services	Value 8 5 8 5 0 1 2	Units KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m²	
ype Electrical equin Allow 4 kWh/m Ype Electrical equiv Allow 4 kWh/m	Table ivalent (KWh/m²) m² for building rela Table valent (KWh/m²) x² for building relat	e 3 Annual Peating 21 Ated service 4 Annual Heating 20 Ited service	Hot Water 4 205 Design I Hot Water 4 25	Small Power 10 Energy T Small Power 25	Targets - Lighting 13 argets - S Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling 1	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts Building related services External Lighting	Value 8 5 8 5 0 1 2 6	Units kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²	
Ype Electrical equin Allow 4 kWh/m Ype Electrical equiv Electrical equiv	Table ivalent (kWh/m²) m² for building rela Table valent (kWh/m²) n² for building relat	e 3 Annual Heating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 Design F Hot Water 4 95	Energy Small Power 10 Energy T Small Power 25	Targets - Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts Building related services External Lighting Small power (Primary)	Value 8 5 8 5 0 1 2 6 10	Units kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²	
ype Electrical equin Allow 4 kWh/m ype Electrical equiv Allow 4 kWh/m	Table ivalent (kWh/m²) m² for building rela Table valent (kWh/m²) n² for building relat	e 3 Annua Heating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 Mes Design I Hot Water 4 95	Small Power 10 Energy T Small Power 25	Targets - Lighting 13 argets - S: Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling 1	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Cooling Lifts Building related services External Lighting Small power (Primary) Small power (Perimary)	Value 8 5 8 5 0 1 2 6 10 25	Units KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m²	
Yype Electrical equin Allow 4 kWh/m Yype Electrical equiv Allow 4 kWh/m	Table ivalent (KWh/m²) m² for building rela Table valent (KWh/m²) s² for building relat	e 3 Annual Heating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 Design I Hot Water 4 295	Energy Small Power 10 Energy Tr Small Power 25	Targets - Lighting 13 argets - So Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling 1	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts Building related services External Lighting Small power (Permary) Small power (SEN D)	Value 8 5 8 5 0 1 2 6 10 25 10	Units KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m²	
ype Electrical equin Allow 4 kWh/m ype Electrical equin Allow 4 kWh/m	Table ivalent (kWh/m²) m² for building rela Table valent (kWh/m²) n² for building relat	e 3 Annual Heating 21 ated service 4 Annual Heating 20 ted service	Hot Water 4 005 Design I Hot Water 4 255	Energy Small Power 10 Energy T Small Power 25	Targets - Lighting 13 argets - S Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling	Lifts 1 Total Lifts 1 Total	Total 57 61 Total 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts Building related services External Lighting Small power (Primary) Small power (Secondary) Small power (Secondary) Small power (Secondary) Small power (Secondary)	Value 8 5 8 0 1 2 6 10 25 10 7	Units kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²	
Type Electrical equiv Allow 4 kWh/m Type Electrical equiv Allow 4 kWh/m	Table ivalent (kWh/m²) m² for building rela Table valent (kWh/m²) n² for building relat	4 Annual Peating 21 4 Annual 20 20 20 20	Hot Water 4 05 Design I Hot Water 4 95	Energy Small Power 10 Energy Tr. Small Power 25	Lighting 13 Lighting 13 Lighting 13	Primary Fans and Pumps 7 econdary Fans and Pumps 7	Cooling 1 Cooling	Lifts 1 Total Lifts 1 Total	Total 57 61 70tal 71 75	17	Parameter Heating Hot Water Internal lighting Fans and pumps Cooling Lifts Building related services External Lighting Small power (Primary) Small power (Secondary). Small power (Secondary). Small power (Secondary). Catering ICT equipment and active infrastructure	Value 8 5 8 5 0 1 2 6 10 25 10 7 Included within Small Power	Units KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m² KWh/m²	

1.1.2 Other Buildings Design Targets

For all other buildings, K2n will produce a unique set of benchmark ranges per building. These are derived where possible from measured performance in operational buildings. The ranges are set with consideration of the activities, areas and servicing solutions used in the 'as built' building.

The K2n targets to be met will be those that meet the lower quartile boundary of expected performance for the as built building. Where significant or unusual process loads are present in the occupied building then these must be separately metered, along with their services, to allow their influence to be separately assessed.

1.2 Utilities design suggestions

Any metering and monitoring provided should enable actions to be taken from the data produced. The monitoring should inform those responsible for specific energy end uses of the performance being achieved for that end use, so action can be taken if needed. A key aspect is of this is a clear separation of energy use by occupants from energy use by the building services plant.

The following utilities design approaches are recommended:

Design item	Examples
Supplies to building services to be	All Mechanical Plant should be on its own separately
separated from supplies to end	metered distribution board(s).
users	Separate Gas meters for Heating Systems and DHW.
	Separate Gas meters for Catering and Process Uses
All energy supplies to be separately	- PV, Wind, CHP, etc must have their contributions/
metered. Exported energy must also	consumptions separately metered and reported.
be separately metered.	- The Main Incoming Electrical Supply Meter from the
	Grid should have its IMPORT and EXPORT values
	metered where there is onsite electricity generation.
	- In the case of heating and/or cooling being exported/
	imported as part of a district scheme then these
	quantities must be metered to quantify the
	contribution/extraction of energy to these schemes.
Main incoming supplies for each	All utilities and their initial sub-circuits must be metered.
utility should be metered and have	This enables verification of recorded loads to ensure
a full set of submeters	robustness of the data.
Lighting and Small Power supplies	This is commonly achieved through split panels with
to be separately metered.	separate metering. Do NOT mix with MECH supplies
Significant and balance loads should	Server Rooms, Catering, Lifts all warrant their own circuit
be separately metered	and meter. Small loads such as Fire Alarm Panels, Disabled
	Refuge Alarm Panels, etc do not require metering but
	would benefit from it as part of ensuring data quality
Do not connect mechanical plant	For example, some AHU's have in-built fan power
back to Small Power or Lighting	monitoring as well as the ability to monitor heat supplied,
circuits UNLESS the plant has its	room conditions, etc. These are capable of being
own in-built monitoring that will be	connected back to the main data collection system.
used to separate its load	
Allow for BMS data collection	Where separating plant utility use would require
connections to inbuilt monitoring	significant additional wiring and/or meters to achieve,
on individual plant such as pumps,	then use of inbuilt monitoring may prove more cost-
AHU's, AC units, etc	effective. Common for NVHR units T and CO2 already.
External conditions	External conditions must be measured with at least one
	high quality, well installed air temperature sensor. A full
	weather station with full solar, wind speed and wind
	direction instruments is desirable for post-occupancy
	tuning of the operation of the building
Internal Environmental Quality	At a minimum room air temperature/black bulb
	thermometers AND good CO2 sensors should be installed
	in all regularly occupied main teaching spaces. VOC
	sensors are a very useful addition if affordable.

1.2.1 All- electric buildings

In addition to the design issues noted in the previous table, the following issues are further clarified for all-electric buildings

Design item	Examples							
Separating electricity use for	The use of electric panel heaters and point-of-use electric							
heating and electricity use for DHW	DHW boilers needs careful planning.							
generation from all other electricity								
use	The requirement is to separate occupant-controlled							
	electricity use i.e. Small Power and Lighting, from that							
	needed to provide the required internal conditions i.e.							
	building demands such as heating, cooling and DHW. The							
	options are:							
	- To separately meter heating and DHW supplies. This							
	may need to be at individual circuit level if supplied							
	from normal sub-distribution boards. Metering							
	systems exist for this approach.							
	- To install plant which can record its own electricity							
	use, etc and collect this information as needed							
	- For electricity DHW use, the water consumption also							
	needs metering. This is to allow draining down and							
	turning off of unused supplies for periods of the year.							
	Ideally two cold water supplies would be run per							
	outlet – one for DHW and one for CWS. These would							
	all be joined to a meter for each circuit.							
	- This arrangement also allows for a future switch to							
	centralised DHW if this proves preferable.							
	- BCWS and other cold water circulation pumpsets need							
	to be separately metered.							
Heat Pumps – both heating and	To separate the heating and cooling energy DEMAND of							
cooling	the building from the ENERGY consumption for heating							
	and cooling then metering should be arranged to							
	understand both. This can be as follows:							
	- Collection of onboard data from each system showing							
	energy used and heating/cooling delivered							
	- Electrical and heat metering on all circuits							
	- Inis level of detail is not required for Server Room							
	cooling equipment but this plant is still required to be							
	metered separately from the Server Room equipment							

1.3 Commissioning Stage (or the SOAK Test)

During the pre-handover commissioning or soak test of all the building systems, or IDEALLY as soon as the BMS is energised and collecting data, the following sets of data should be collected and sent to the k2n email address provided for the school:

Meters:

- A set of manual meter readings and/or photos, taken at two different times, recording both time of reading and the meter reading value from each physical meter in the school. This should include ALL Supplier Utility Meters too.
- Ideally, the first readings should be from the start of the soak test period and the second from the end of the soak test. This will normally be a few days minimum. The main need is that the readings are taken for each meter at the same time (within a few minutes is fine) and that enough time is allowed for consumptions to be established for each meter.
- If the meters do not increment regularly, ideally every 15 minutes, ensure their resolution is correct for the load. Provide units for each meter if not kWh or m³.
- For electricity meters, a minimum resolution of 0.1 kWh, but Wh is also fine.
- For gas and water meters, 0.1 m³ should be aimed for as a minimum resolution.
- For heat meters, kWh are preferable to MWh.
- To accompany the manual readings the concurrent 15-minute data recorded over the soak test period by the BMS should also be sent as a csv data file to the given email address.
- Manually calculate the consumption recorded over the period of the readings by the meters.
- The sum of the submeters consumption for each utility being monitored (electricity, gas, heat and water normally) should be compared with the consumption of the main incomer. These two values should be within 2% ideally for all utilities, but up to 5% might be OK.

Sensors:

- For the Temp and CO₂ sensors in each space, record the time and values shown by a handheld T & CO₂ probe.
- Compare these with the readings showing for that space on the BMS at time of readings.
- The recorded values and time of each sensor reading should then sent to K2n along with the corresponding BMS data recorded.
- Readings should normally be within 0.3°C or 25 ppm of each other

K2n will also check the manual readings and sensor values against the readings and values provided by the BMS to identify any data collection problems.

These tests are essential to ensuring the data used is accurate and verified before contractors leave the site and can save £000's in costs c.f. rectifying later. The most common errors arise from:

- Meters not being connected
- Meters not working (especially gas and water)
- Incorrect meter multipliers used (especially gas and water)
- Incorrect BMS to meter setups
- Poor labelling of meters and/or sensors leading to uncertainty as to what they are
- Uncertainty over how DB board elec Light and Power meters relate to each other
- Main Elec Incomer not providing both IMPORT and EXPORT readings where PV is installed
- Inability to send the daily data files to K2n due to lack of internet email connection

1.3.1 The SOAK Test Checklist

The table below summarises the key K2n elements proposed for the Soak test:

Element	Notes	Complete
Photos, taken over a few days minimum,		
recording both time of reading and the		
meter reading value for each physical		
meter in the school		
Each meter's resolution has been		
checked as appropriate for its connected		
load		
The 15-minute data recorded during the		
soak test by the BMS FOR EACH METER		
and SENSOR has been sent in csv format		
to the given K2n email address, along		
with the photos		
A calculation of the sum of the submeters		
consumption during the soak test yields a		
value within +/- 2% of the main incomer		
consumption for each utility		
Measured T and CO ₂ within sample		
spaces matches the data shown at the		
BMS at the time within 0.3°C or 25 ppm		
The measured T and CO2 values for each		
named space, and the time taken, have		
been sent to the given K2n email address		

As noted earlier, you would ideally have tested and verified the accuracy and operation of the data collection systems BEFORE the Soak Test commences so that you can confidently use the data as part of the Soak Test checks.

1.4 Providing robust data to K2n

1.4.1 Meter data

There are a series of 'good practice' decisions which should ensure smooth installation and commissioning. The key points considered essential to follow are:

1.4.1.1 Metering: Design stage:

Example BMS Meter Points Partial Table

The following are examples of each type of the key meter data that need to be recorded in the BMS points. Their description should coincide with the meters and sensors noted as installed in the building assets supplied to K2n:

Label	Units	
EM01_Elec_Main_Incomer	kWh	
EM02_Refuge_Alarm_Panel	kWh	
EM03_Fire_Alarm_Panel	kWh	
EM04_BMS_MCC1	kWh	
EM05_EXT_Lighting	kWh	
EM06_Lift	kWh	
EM07 PV Array	kWh	
EM08 DB GF VentPower	kWh	
EM09_DB_1F_VentPower	kWh	
EM10 DB GF 12 KitchenPower	kWh	
EM11 DB GF 11 AVPower	kWh	
EM12 DB GF 10 ICTPower	kWh	
EM13 DB GF 09 ITPower	kWh	
EM14 DB GF 08 SciencePower	kWh	
EM15_DB_GF_07_RES MAT Power	kWh	
EM16_DB_GF_06_ARTPower	kWh	
EM17 DB GF 05 FoodTECHPower	kWh	Fach meter has its
EM18 DB GF 04 SELights	kWh	
EM19 DB GF 04 SEPower	kWh	data initially
EM20 DB GF 03 NELights	kWh	recorded into the
EM21 DB GF 03 NEPower	kWh	BMS database or
EM22 DB GF 02 NWLights	kWh	other data
EM23 DB GE 02 NWPower	kWh	
EM24 DB GE 01 SWLights	kWh	collector system.
EM25 DB GE 01 SWPower	kWh	This data is then all
EM26 DB 1E 05 ServerBMPower	kWh	packaged into a
EM27 DB 1E 04 PlantBoom	kWh	csy filo or filos
EM28 DB 1E 03 SELights	kWh	csv file of files
EM29 DB 1E 03 SEPower	kWh	each evening for
EM30 DB 1E 02 NELights	kWh	sending to the K2n
EM31 DB 1E 02 NEPower	kWh	platform
EM32 DB 1E 01 NWLights	kWh	
EM33 DB 1F 01 NWPower	kWh	
GM01 Main Gas Incomer	m ³	
GM02 Boiler Gas	m ³	
GM03 Kitchen Gas	m ³	
GM04 DHW Gas	m ³	
WM01 Boundary Water	m ³	
WM02 Main Water Incomer	m ³	
WM03 CAT5	m ³	
WM04 DHW Calorifier Water	m ³	
WM05 Existing Building Supply	m ³	
WM06 Kitchen DHW Supply	m ³	
WM07 Kitchen CWS Supply	m ³	
HM01 VT Circuit 1	kWh	
HM02 VT Circuit 2	kWh	
HM03 CT Circuit 1	kWh	
HM04 CT Circuit 2	kWh	

• The electricity, gas, heat and water distribution systems are designed to allow clear separation of consumption by the desired end uses and plant served.

• Sub-metering is applied to ALL subcircuits fed directly from the main incomer(s) for each utility. This allows correlation of submeter demands with main meters

• Ensure ALL incoming supplies are accurately metered – including separate Incomer Import and Export readings where PV, batteries or other on-site storage/ generation is installed.

• Choose a data collection system capable of collecting readings at 15-minute intervals, storing this data, and automatically sending it to K2n in csv format via an email each evening at a specified time

• Ensure an email server and internet connection are available for the data transmission system to be used

1.4.1.2 Metering: Construction stage:

- Sized to provide useful resolution readings over each 15-minute for the design loads served e.g. kWh not MWh for a heat meter recording DHW energy use
- Gas meters Qmin to be sized for the actual demands
- Meters to have documentation showing the circuits and plant they serve 'as-built'
- All meters installed have calibration certificates showing their accuracy over their range

Example BMS csv data file output for one day

Note the data for each meter should be the ACTUAL READING at each 15 minute interval, NOT an interpolation. This csv data should be sent each night via email to the unique email address given for the school once the final reading for the day has been taken and stored. This email address is of the form <u>'school name 15min data@data.k2nenergy.com</u>. The example file for one day shows data for just the first 8 meters as examples, but all meter and sensor data could be in here too. Note that the column headings contain the BMS labels for each data stream

timestamp	EM01_Elec_Main_Incomer	EM02_Refuge_Alarm_Panel	EM03_Fire_Alarm_Panel	EM04_BMS_MCC1	EM05_EXT_Lighting	EM06_Lift	EM07_PV_Array	EM08_DB_GF_VentPower Etc for all meter and sensor points
05/10/2020 00:00	89514	0.96	12.10	6189.1	578.8	2.59	2384.2	2 31.6
05/10/2020 00:15	89520	0.96	12.11	6189.3	578.9	2.59	2384.2	2 31.6
05/10/2020 00:30	89520	0.96	12.11	6189.3	5/9	2.55	2384.2	2 31.6
05/10/2020 00:43	89526	0.96	12.12	6189.4	579.2	2.5	2384.2	2 31.6
05/10/2020 01:15	89531	0.96	12.13	6189.6	579.4	2.59	2384.2	2 31.6
05/10/2020 01:30	89531	0.96	12.13	6189.6	579.5	2.59	2384.2	2 31.6
05/10/2020 01:45	89537	0.96	12.14	6189.8	579.6	2.59	2384.2	2 31.6
05/10/2020 02:00	89537	0.96	12.14	6189.8	579.7	2.59	2384.2	2 31.6
05/10/2020 02:15	89543	0.96	12.15	6190.2	579.8	2.55	2384.2	2 31.6
05/10/2020 02:30	89543	0.97	12.15	6190.2	5/9.9	2.55	2384.2	2 31.6
05/10/2020 03:00	89549	0.97	12.10	6190.3	580.1	2.5	2384.2	2 31.0
05/10/2020 03:15	89555	0.97	12.17	6190.5	580.3	2.59	2384.2	2 31.7
05/10/2020 03:30	89555	0.97	12.17	6190.5	580.4	2.59	2384.2	2 31.7
05/10/2020 03:45	89561	0.97	12.18	6190.6	580.5	2.59	2384.2	2 31.7
05/10/2020 04:00	89561	0.97	12.18	6190.6	580.6	2.59	2384.2	2 31.7
05/10/2020 04:15	89566	0.97	12.19	6190.7	580.7	2.55	2384.2	2 31.7
05/10/2020 04:30	89573	0.97	12.19	6190.7	580.0	2.55	2304.2	2 31.7
05/10/2020 05:00	89573	0.97	12.20	6190.9	581	2.59	2384.2	2 31.7
05/10/2020 05:15	89578	0.97	12.21	6191	. 581.1	2.59	2384.2	2 31.7
05/10/2020 05:30	89578	0.97	12.21	6191	. 581.3	2.59	2384.2	2 31.7
05/10/2020 05:45	89584	0.97	12.22	6191.1	581.4	2.59	2384.2	2 31.7
05/10/2020 06:00	89584	0.97	12.22	6191.1	581.5	2.59	2384.2	2 31.7
05/10/2020 06:15	89590	0.97	12.23	6191.5	581.0	2.55	2384.2	2 31.7
05/10/2020 06:45	89596	0.97	12.25	6191.7	581.8	2.5	2384 2	2 31.7
05/10/2020 07:00	89596	0.97	12.24	6191.7	581.9	2.59	2384.2	31.7
05/10/2020 07:15	89602	0.97	12.25	6191.8	581.9	2.55	2384.2	2 31.7
05/10/2020 07:30	89602	0.98	12.25	6191.8	582	2.55	2384.2	2 31.7
05/10/2020 07:45	89607	0.98	12.26	6192	582	2.59	2384.2	2 31.7
05/10/2020 08:00	89607	0.98	12.26	6192	582	2.55	2384.2	2 31.7
05/10/2020 08:30	89613	0.96	12.27	6192.3	582	2.5	2384.2	2 31.7
05/10/2020 08:45	89619	0.98	12.28	6192.5	582	2.6	2384.2	2 31.7
05/10/2020 09:00	89619	0.98	12.28	6192.5	582	2.6	5 2384.3	3 31.7
05/10/2020 09:15	89625	0.98	12.29	6192.6	582.1	2.6	5 2384.4	4 31.7
05/10/2020 09:30	89625	0.98	12.29	6192.6	582.1	2.61	2384.5	5 31.7
05/10/2020 09:45	89631	0.98	12.30	6192.8	582.1	2.61	2384.6	5 31.7
05/10/2020 10:00	89631	0.98	12.30	6192.8	582.1	2.6	2384.	7 31.7 8 31.7
05/10/2020 10:15	89637	0.98	12.31	6192.9	582.1	2.61	2384.9	9 31.7
05/10/2020 10:45	89642	0.98	12.32	6193.2	582.1	2.61	2385	5 31.7
05/10/2020 11:00	89642	0.98	12.32	6193.2	582.1	2.61	2385.2	2 31.7
05/10/2020 11:15	89648	0.98	12.33	6193.3	582.2	2.61	2385.4	4 31.7
05/10/2020 11:30	89648	0.98	12.33	6193.3	582.2	2.62	2385.6	6 31.7
05/10/2020 11:45	89653	0.98	12.34	6193.5	582.2	2.62	2385.8	8 31.7
05/10/2020 12:00	89659	0.96	12.34	6193.3	582.2	2.62	2386.2	2 31.8
05/10/2020 12:30	89659	0.99	12.35	6193.7	582.2	2.62	2386.4	4 31.8
05/10/2020 12:45	89664	0.99	12.36	6193.8	582.2	2.6	2386.6	6 31.8
05/10/2020 13:00	89664	0.99	12.36	6193.8	582.3	2.6	3 2386.8	8 31.8
05/10/2020 13:15	89669	0.99	12.37	6194	582.3	2.6	2387	7 31.9
05/10/2020 13:30	89669	0.99	12.37	6194	582.3	2.64	2387.2	2 31.9
05/10/2020 13:43	89674	0.9	12.38	6194.2	582.3	2.64	2387.6	4 51.5 6 31.9
05/10/2020 14:15	89679	0.99	12.30	6194.4	582.3	2.64	2387.6	6 31.9
05/10/2020 14:30	89679	0.99	12.39	6194.4	582.3	2.64	2387.6	6 31.9
05/10/2020 14:45	89683	0.99	12.40	6194.6	582.3	2.65	i 2387.6	6 31.9
05/10/2020 15:00	89683	0.99	12.40	6194.6	582.4	2.65	5 2387.6	6 32
05/10/2020 15:15	89688	0.99	12.41	6194.7	582.4	2.65	2387.6	6 32.1
05/10/2020 15:30	89088	0.95	12.41	6194.7	582.4	2.65	2387.0	6 22.2
05/10/2020 16:00	89692	0.9	12.42	6194.9	582.4	2.66	2387.6	6 32.4
05/10/2020 16:15	89696	0.99	12.43	6195.1	582.4	2.66	5 2387.6	6 32.5
05/10/2020 16:30	89696	0.99	12.43	6195.1	. 582.5	2.66	5 2387.6	6 32.6
05/10/2020 16:45	89700	0.99	12.44	6195.2	582.6	2.67	2387.6	6 32.7
05/10/2020 17:00	89700	0.99	12.44	6195.2	582.7	2.67	2387.6	b 32.8
05/10/202017:15	89704	0.99	12.45	6195.5	582.8	2.67	2387.6	52.8 6 32.8
05/10/2020 17:45	89704	1.00	12.45	6195.3	582.9	2.67	2387.0	6 32.8
05/10/2020 18:00	89707	1.00	12.46	6195.7	583.1	2.67	2387.6	6 32.8
05/10/2020 18:15	89710	1.00	12.47	6195.8	583.2	2.67	2387.6	6 32.8
05/10/2020 18:30	89710	1.00	12.47	6195.8	583.4	2.67	2387.6	6 32.8
05/10/2020 18:45	89713	1.00	12.48	6196	583.6	2.67	2387.6	5 32.8
05/10/2020 19:00	89713	1.00	12.48	6196	583.7	2.67	2387.6	52.8 6 32.8
05/10/2020 19:15	89715	1.00	12.49	6196.2	584.1	2.67	2367.0	6 32.8
05/10/2020 19:45	89717	1.00	12.49	6196.4	584.2	2.67	2387.6	6 32.8
05/10/2020 20:00	89717	1.00	12.50	6196.4	584.4	2.67	2387.6	6 32.8
05/10/2020 20:15	89719	1.00	12.51	6196.5	584.6	2.67	2387.6	6 32.8
05/10/2020 20:30	89719	1.00	12.51	6196.5	584.8	2.67	2387.6	6 32.8
05/10/2020 20:45	89720	1.00	12.52	6196.8	584.9	2.67	2387.6	5 32.8
05/10/2020 21:00	89720	1.00	12.52	6196.8	585.1	2.67	2387.0	52.8 6 22.9
05/10/2020 21:15	89/21	1.00	12.53	6196.9	585.3	2.6	2387.0	6 32.8
05/10/2020 21:45	89721	1.00	12.55	6196.9	585.6	2.67	2387.6	6 32.8
05/10/2020 22:00	89723	1.00	12.54	6197.1	585.8	2.67	2387.6	6 32.8
05/10/2020 22:15	89723	1.00	12.55	6197.1	585.9	2.67	2387.6	6 32.8
05/10/2020 22:30	89724	1.01	12.55	6197.3	586.1	2.67	2387.6	6 32.8
05/10/2020 22:45	89724	1.01	12.56	6197.3	586.3	2.67	2387.6	b 32.8
05/10/2020 23:00	89725	1.01	12.56	6197.5	586.4	2.67	2387.6	52.8 6 32.8
05/10/2020 23:30	89723	1.01	12.57	6197.6	586.7	2.67	2387.6	6 32.8
05/10/2020 23:45	89727	1.01	12.58	6197.6	586.8	2.67	2387.6	6 32.8

1.4.1.3 Metering: Commissioning and operation stage:

- The pulses per monitored unit are provided for each water or gas meter e.g. 1 pulse = 100 litres for a water meter or 1 pulse = 0.1 m³ of gas. Check water meters particularly.
- Gas and Water READINGS should be sent to K2n by cumulatively adding the pulses to an initial manual reading for each meter. Allows overall consumption to be checked if needed.
- Electricity meters have the meter READING recorded every 15 minutes, not the consumption
- All meters have their ACTUAL value recorded every 15 minutes. Do not use interpolation setting which is designed to reduce space use in the BEMS database.
- Check the data is being sent each night after 00:00 and received at the K2n database

K2n Operational Data Input Table (Partial)

This table shows how the BM	S Labels are used i	n the K2n asset sh	eet to connect the operation	al data to the	e right ı	meter
Name	Meter Type	Unit Type	Unique Meter Id (uses the la	bels from th	e csv fil	e)
Main Electrical Incomer	Electricity	kWh	EM01 Elec Main Incomer			
Refuge Alarm Panel	Electricity	kWh	EM02 Refuge Alarm Panel			
Fire Alarm Panel	Electricity	kWh	EM03 Fire Alarm Panel			
BMS MCC1 Power	Electricity	kWh	EM04 BMS MCC1			
External Lighting	Electricity	kWh	EM05 EXT Lighting			
Lift Supply	Electricity	kWh	EM06 Lift			
PV Array Output	Electricity	kWh	EM07 PV Array			
DB GF Vent Power	Electricity	kWh	EM08 DB GE VentPower			
DB 1F Vent Power	Electricity	kWh	EM09 DB 1F VentPower			
DB GF Kitchen Power	Electricity	kWh	EM10 DB GF 12 KitchenPower			
DB GF Audio Visual Power	Electricity	kWh	EM11 DB GF 11 AVPower			
DB GE ICT Power	Electricity	kWh	EM12 DB GE 10 ICTPower			
DB GF IT Power	Electricity	kWh	EM13 DB GF 09 ITPower			
DB GE Science Power	Electricity	kWh	EM14 DB GE 08 SciencePower			
DB GE BM Power	Electricity	kWh	EM15 DB GE 07 RES MAT Power			
DB GE Art Power	Electricity	kWh	EM16 DB GE 06 ABTPower			
DB GE Food Tech Power	Electricity	kWh	EM17_DB_GE_05_EoodTECHPower			
DB GE SE Lights	Electricity	kWh	EM18 DB GE 04 SELights			
DB GE SE Power	Electricity	kWh	EM19 DB GE 04 SEPower	Note these	meters a	re split
DB GE NE Lights	Electricity	kWh	EM20 DB GE 03 NELights	panel Lighti	ing and Po	ower
DB GE NE Power	Electricity	kWh	EM21_DB_GE_03_NEPower	meters. The	e labels sh	nould
DB GE NW Lights	Electricity	kWh	EM22 DB GE 02 NWLights	make clear	exactly w	hat is
DB GE NW Power	Electricity	kWh	EM23_DB_GE_02_NWPower	being recor	ded, e.g T	TOTAL of
DB GE SWLights	Electricity	kWh	EM24 DB GE 01 SWLights	the board o	r JUST Po	wer OR
DB GE SW Power	Electricity	kWh	EM25_DB_GE_01_SWPower	Lighting		
DB 1F Server Power	Electricity	kWh	EM26_DB_1E_05_ServerBMPower			
DB 1F Plant Room Power	Electricity	kWh	EM27_DB_1E_04_PlantRoom			
DB 1F SE Lights	Electricity	kWh	EM28 DB 1E 03 SElights			
DB 1F SE Power	Electricity	kWh	EM29_DB_1E_03_SEPower	Note these	meters a	re split
DB 1F NE Lights	Electricity	kWh	EM30 DB 1E 02 NELights	panel Lighti	ing and Po	ower
DB 1E NE Power	Electricity	kWh	EM31_DB_1E_02_NEPower	meters. The	e labels sh	nould
DB 1F NW Lights	Electricity	kWh	EM32_DB_1E_01_NWLights	make clear	exactly w	hat is
DB 1F NW Power	Electricity	kWh	EM32_DB_1F_01_NWPower	being recor	ded, e.g T	TOTAL of
GM01 Main Gas Incomer	Gas	m ³	GM01 Main Gas Incomer	the board o	r JUST Po	wer OR
GM02 Boiler Gas	Gas	m ³	GM02 Boiler Gas	Lighting		
GM03 Kitchen Gas	Gas	m ³	GM03_Eitchen Gas			
GM04 DHW Winter Gas	Gas	m ³	GM04 DHW/ Gas			
WM01 Utility Supply Meter	Water	m ³	WM01 Boundary Water			
WM02 Main Incomer	Water	m ³	WM02 Main Water Incomer			
WM03 CAT5	Water	m ³	WM03_CAT5			
WM04 DHW Calorifier	Water	m ³	WM04 DHW Calorifier Water			
WM05 Existing Building	Water	m ³	WM05 Existing Building Supply			
WM06 Kitchen DHW Lise	Water	m ³	WM06 Kitchen DHW Supply			
WM07 Kitchen CWS	Water	m ³	WM07 Kitchen CWS Supply			
Main Badiator Circuit Heat Use	Heat	kWh	HM01 VT Circuit 1			
Community Circuit Heat Use	Heat	kWh	HM02 VT Circuit 2			
AHU Heat Use	Heat	kWh	HM03 CT Circuit 1			
Solar Thermal DHW Heat Supply	Heat	kWh	HM04 CT Circuit 2			

1.4.2 Sensor data

For sensors there are also a series of 'good practice' decisions which should ensure smooth installation and commissioning. These are shown for the various stages of design, construction and operation. The bullet points show essential elements to follow:

1.4.2.1 Sensors: Design stage:

BMS Sensor Points Partial Table Example The following are examples of each type of the key sensor data that need to be recorded in the BMS points. Their description should coincide with the meters and sensors noted as installed in the building assets supplied to K2n: Label Units 1st Floor Temp1 Centigrade 1st Floor Temp2 Centigrade AHU Supply Temp Centigrade **CT Flow Temp** Centigrade CT RTN Temp Centigrade Ground Floor Temp Centigrade **HWS Calorifier Temp** Centigrade **HWS Flow Temp** Centigrade HWS RTN Temp Centigrade HWS SECFlow Temp Centigrade HWS SECRTN Temp Centigrade LTHW Flow Temp Centigrade LTHW RTN Temp Centigrade **Outside Air Temp** Centigrade VT Flow Temp Centigrade VT RTN Temp Centigrade 0021 Pupil Changing Temp Centigrade 0022 SportsHall CO2 ppm Each sensor has its 0022 SportsHall Temp Centigrade data initially 0026 Dining RM CO2 ppm recorded into the 0026 Dining RM Temp Centigrade BMS database or 0027 Kitchen RM CO2 ppm 0032 MainHall CO2 ppm other data 0032 MainHall Temp Centigrade collector system. 0042 YR6 ClassRM CO2 ppm This data is then all 0042 YR6 ClassRM Temp Centigrade packaged into a 0047 Science ClassRM CO2 ppm 0047 Science ClassRM Temp Centigrade csv file or files 0051 Workshop CO2 ppm each evening for 0051 Workshop Temp Centigrade sending to the K2n 0054 Food ClassRM CO2 ppm platform 0054 Food ClassRM Temp Centigrade 0057 ART ClassRM CO2 ppm 0057 ART ClassRM Temp Centigrade 0065 ICT ClassRM CO2 ppm 0065 ICT ClassRM Temp Centigrade 0068 GEN ClassRM CO2 ppm 0068 GEN ClassRM Temp Centigrade 0071 ClassRM CO2 ppm 0071 GEN ClassRM Temp Centigrade 0074 ClassRM CO2 ppm 0074 GEN ClassRM Temp Centigrade 0080 GEN ClassRM CO2 ppm 0080 GEN ClassRM Temp Centigrade 0083 GEN ClassRM CO2 ppm 0083 GEN ClassRM Temp Centigrade 0086 GEN ClassRM CO2 ppm

Centigrade

• Ensure air temperature and CO₂ sensors are provided for ALL main teaching spaces

• Ensure air temperatures are provided for Server Rooms and LAN rooms

• Provide Outside Air Temperature (OAT) sensors

Ensure
 temperatures are recorded
 for key plant and circuits

• Choose a data collection and transmission system capable of collecting actual data at 15-minute intervals, storing this data, and automatically sending it to K2n in csv format via an email each evening at a specified time

• Ensure that an email server and external internet connection are available to the data collection and transmission system to be used

0086 GEN ClassRM Temp

1.4.2.2 Sensors: Construction stage:

- Ensure OAT sensors are located where direct solar and indirect heating effects cannot affect the readings as these are essential to plant operation and assessment of heating/cooling performance in practice. This usually means using a Stevenson's screen located in a sheltered North facing area and above surfaces such as grass or a sedum roof.
- Locate CO2 and T sensors in the correct zones for each space
- Ensure all sensors have calibration certificates and their range is suitable for their use •
- Ensure sensors are connected to the BEMS or other data collection and transmission device •

nestamp HWS Calor	ifier Temp HWS Flow	v Temp H	VS RTN Temp	HWS SECFlow Temp HWS SE	CRTN Temp	THW Flow Temp	LTHW RTN Temp Outside Air Ten	np Etc for all meter and sensor poi
5/10/2020 00:00	65.1	79.8	75.5	79.8	61.2	79.9	71.1	11.3
5/10/2020 00:15	64.4	78.7	77.8	78.7	58.8	80.4	61.7	11.2
5/10/2020 00:30	64.9	77.2	76.4	77.2	55.2	80.8	62.6	11
/10/2020 00:45	65	75.9	75.2	75.9	52.8	80.6	61.8	10.8
/10/2020 01:00	65	/4./	/4.1	/4./	51.8	80.1	62.2	10.8
/10/2020 01:15	65.1	73.5	73	73.5	50.2	80	62.2	10.8
/10/2020/01:30	65.1	72.4	71.9	72.4	46.5	80.7	63.4	10.9
/10/2020/01:45	64.9	71.3	70.5 69.8	71.3	40.2	80.2	63	11
/10/2020 02:05	64.9	69.2	69	69.2	48.6	80.6	62.4	11.1
/10/2020 02:30	64.9	68.4	68.2	68.4	48	80.6	62.5	11.1
/10/2020 02:45	64.9	67.5	67.3	67.5	47.6	79.8	61.5	11.1
/10/2020 03:00	64.8	66.7	66.5	66.7	46.9	80.1	62.4	11.2
/10/2020 03:15	64.7	65.8	65.7	65.8	47.4	79.9	63.1	11.4
/10/2020 03:30	64.7	65	64.9	65	47.2	80.1	62.6	11.5
/10/2020 03:45	64.6	64.2	64	64.2	47.5	80.7	63.1	11.6
/10/2020 04:00	64.4	63.4	63.2	63.4	47.2	80.4	62.7	11.8
/10/2020 04:15	64.3	62.6	62.4	62.6	46.5	79.8	62.5	12.1
/10/2020/04:30	64	61.8	61.5	61.8	46.9	/9./	63.5	12.2
/10/2020/04:45	63.6	60.2	50.7	60.2	40.6	80.1	62.0	12.5
/10/2020/05:15	63	59.5	59.9	59.5	46.5	80.4	63.9	12.7
/10/2020/05:30	62.5	59	58.7	59	40.1	79.6	64.3	13.2
/10/2020 05:45	62	58.4	58.1	58.4	46.3	79.6	64.1	13.4
/10/2020 06:00	61.5	57.8	57.5	57.8	46.3	79.5	63.5	13.5
/10/2020 06:15	61	57.2	57	57.2	46.3	79.9	63.4	13.8
/10/2020 06:30	60.5	56.6	56.4	56.6	46.3	79.7	63.7	13.9
/10/2020 06:45	60	56.1	55.8	56.1	46	79.9	64.3	14
/10/2020 07:00	59.5	55.5	55.2	55.5	45.4	80.3	64.1	14
/10/2020 07:15	59.1	54.9	54.6	54.9	44.9	80.4	63.6	14
/10/2020 07:30	58.7	54.4	54	54.4	45.9	80.4	63.5	13.9
/10/2020 07:45	58.4	53.8	53.2	53.8	46	80.4	63.3	13.9
/10/2020 08:00	58.1	53.2	52.2	53.2	46	80.3	64.4	13.9
/10/2020 08:15	57.7	52.7	51	52.7	45.6	80.4	64.3	13.9
/10/2020 08:30	57.4	52.2	50.1	52.2	45.3	80.3	63.9	14
/10/2020 08:45	57	51.6	49.5	51.6	45.2	80	63.8	14
/10/2020 09:00	56.7	51.1	49	51.1	44.4	80.3	64.4	14.1
/10/2020 09:15	49.9	60.3	57.6	60.3	47.8	60.4	55.2	14.4
/10/2020 09:30	58.2	82	74.7	82	52.8	82.2	71.9	14.6
/10/2020 09:45	62.1	74.9	71.4	74.9	55.4	75	69.8	14.9
/10/2020 10:00	65.8	78.1	75	78.1	58.6	77.8	74.2	15.3
/10/2020 10:15	66.5	76.9	73.9	76.9	61	77	71.7	15.6
/10/202010:30	67.4	/8.5	/5.2	/8.5	63.1	/8.9	/2	15.8
/10/202010:45	67.4	/8.5	/5.2	/8.5	63.1	/8.9	/2	15.8
(10/202011:00	66.5	80.8	80.2	80.8	63.5	80.9	74.2	16
/10/2020 11:15	64.0	76.6	00.5 72.4	76.6	60.1	76.1	75.6	16.2
/10/2020 11:30	62.9	76.6	72.4	76.0	50.1	78.1	70.9	16.5
/10/2020 11:45	65.9	78.5	74.6	78.5	61.1	78.7	70.5	16.0
/10/2020 12:05	66.3	80.3	76.3	80.3	62.2	80.6	73.6	17
/10/2020 12:30	65.6	80	76.5	80	62.3	80	73.6	17.3
/10/2020 12:45	64.3	79.9	77.7	79.9	61.5	79.9	74	17.6
/10/2020 13:00	64.2	77.4	73.6	77.4	60.5	77.7	71.2	18.1
/10/2020 13:15	65.1	79.5	75.2	79.5	60.7	79.7	72.9	18.3
/10/2020 13:30	65.6	79.1	75.4	79.1	61.5	79.2	72.8	17.7
/10/2020 13:45	65.4	80.1	76.1	80.1	61.8	80.2	73.4	17.2
/10/2020 14:00	64.9	79.9	76.2	79.9	61.6	80.4	72.5	17.1
/10/2020 14:15	64.7	79.4	75.3	79.4	61.1	79.4	72.7	17.5
/10/2020 14:30	64.9	80	75.7	80	61	80	73.7	18.5
/10/2020 14:45	65	77.5	74	77.5	61.3	78	71.6	17.2
/10/2020 15:00	65.1	78.2	74.5	78.2	61.4	78.3	70.6	14.3
/10/202015:15	65.1	75.2	72.6	75.2	61.5	75.4	66.3	13.5
/10/2020 15:30	64.8	81.8	76.8	81.8	61.3	82.3	69.8	13.3
/10/2020 15:45	65.1	/6.4	/3.3	/6.4	61.4	/6.8	09.5	13.2
/10/2020 10:00	05.1 pc 1	79.2	/5.4	79.2	61.3	79.2	71.0	13 2
/10/2020 10:13	1.00	79.4	/5.5	79.4	61.5	79.7	71.2	13.1
/10/2020 16:45	64.9	76.9	/5 75.4	70.9	61.3	76.9	71	12.8
/10/2020 17:00	65.1	79.7	73.4	73.3	61.3	79.5	71.1	12.8
/10/2020 17:15	64.9	78.6	74.8	78.6	61.3	78.7	71	12.8
/10/2020 17:30	63.9	67.4	66.3	67.4	61.1	69.3	57.7	12.5
/10/2020 17:45	65.4	80.9	76.1	80.9	60.7	81.3	70.7	12.4
/10/2020 18:00	66.1	79.1	75.9	79.1	62.1	77.1	70.7	12.4
/10/2020 18:15	65.3	77.7	74.5	77.7	62	78.3	67.8	12.4
/10/2020 18:30	64.7	78.5	75	78.5	61.4	78.4	69.3	12.4
/10/2020 18:45	64.4	77.2	73.6	77.2	60.9	77.3	68.3	12.3
/10/2020 19:00	64.7	76.7	73.3	76.7	60.9	76.8	68.3	12.3
10/2020 19:15	65	76	72.9	76	61.2	76.2	67.8	12.2
/10/2020 19:30	65.5	79.1	75.3	79.1	61.5	79.2	70.2	11.9
10/2020 19:45	65.4	79.5	75.7	79.5	61.8	79.7	70.4	11.7
10/202020:00	65	80.5	76.6	80.5	61.6	80.6	71.1	11.6
10/2020 20:15	64.7	79.4	75.6	79.4	61.3	79.8	69.8	11.5
10/2020 20:30	64.8	79.5	75.3	79.5	61.1	79.4	/0.8	11.4
10/2020 20:45	65	79	75.2	79	61.2	79.2	70	11.4
10/202021:00	65.2	79.9	75.9	79.9	61.4	80	/0.9	11.4
10/2020 21:15	65.2	79.5	75.6	79.5	61.5	79.5	70.8	11.4
10/2020 21:30	64.9	80.3	76.2	80.3	61.4	80.4	/0.8	11.3
10/2020 21:45	64.8	80	75.9	80	61.2	80.3	/0.4	11.3
10/2020 22:00	64.9	78.9	75	78.9	61.2	79.1	/0.2	11.3
10/2020 22:15	65.1	79.7	75.7	79.7	61.3	79.8	70.8	11.2
10/202022:30	65.1	79.7	75.8	79.7	61.4	80	/0.6	11.2
10/2020 22:45	65.1	79.4	75.5	79.4	61.4	79.5	/0./	11.2
10/ 2020 23:00	64.9	/9.6	/5.7	/9.6	61.4	/9.8	70.1	11.2
10/2020 23:15	64.9	/9.7	/5.7	/9./	61.2	/9.8	70.6	11.2
/ 10/ 2020 23.50	60	/9.2	/5.3	/9.2	61.3	/9.3	/0.5	11.1
40/2020 22 12							70.7	

BMS csv data file output for one day example

Note the data for each sensor should be the ACTUAL READING at each 15 minute interval. NOT an interpolation. This csy data should be sent each night via email to the unique email address given

1.4.2.3 Sensors: Commissioning and operation stage:

- Ensure each sensor is correctly identified by the data collector
- Independently monitor the conditions being recorded at each sensor with calibrated instruments and check accuracy against recorded values at the data collector
- All sensors have their ACTUAL value recorded every 15 minutes. Do not use the interpolation setting which is designed to reduce space use in the BEMS database.
- Check the data is being sent each night after 00:00 and received at the K2n database

Example K2n Operational Data Input Table (Partial)

This table shows how the BMS Labels are used in the K2n asset sheet to connect the operational data to the right sensor

Name	Sensor Type	Unit Type	Unique Sensor Id (uses the labels from the csv file		
1st Floor Corridor Air Temp 1	Room air temperature sensor	Centigrade	1st Floor Temp1		
1st Floor Corridor Air Temp 2	Room air temperature sensor	Centigrade	1st Floor Temp2		
Kitchen AHU Supply Temp	Room supply temperature	Centigrade	AHU Supply Temp		
CT Flow Temp	Hot water flow temperature	Centigrade	CT Flow Temp		
CT Return Temp	Hot water return temperature	Centigrade	CT RTN Temp		
Ground Floor Temp	Room air temperature sensor	Centigrade	Ground Floor Temp		
HWS Calorifier Temp	Storage Temperature	Centigrade	HWS Calorifier Temp		
HWS Flow Temp	Hot water flow temperature	Centigrade	HWS Flow Temp		
HWS Return Temp	Hot water return temperature	Centigrade	HWS RTN Temp		
HWS Secondary Flow Temp	Hot water flow temperature	Centigrade	HWS SECFlow Temp		
HWS Secondary Return Temp	Hot water return temperature	Centigrade	HWS SECRTN Temp		
LTHW Flow Temp	Hot water flow temperature	Centigrade	LTHW Flow Temp		
LTHW Return Temp	Hot water return temperature	Centigrade	LTHW RTN Temp		
Outside Air Temp	Outside Air Temperature	Centigrade	Outside Air Temp		
VT Flow Temp	Hot water flow temperature	Centigrade	VT Flow Temp		
VT Return Temp	Hot water return temperature	Centigrade	VT RTN Temp		
Room 0021 Pupil Changing Temp	Room air temperature sensor	Centigrade	0021 Pupil Changing Temp		
Room 0022 Sports Hall CO2	CO2	ppm	0022 SportsHall CO2		
Room 0022 Sports Hall Temp	Room air temperature sensor	Centigrade	0022 SportsHall Temp		
Room 0026 Dining Room CO2	CO2	ppm	0026 Dining RM CO2		
Room 0026 Dining Room Temp	Room air temperature sensor	Centigrade	0026 Dining RM Temp		
Room 0027 Kitchen CO2	CO2	ppm	0027 Kitchen RM CO2		
Room 0032 Main Hall CO2	CO2	ppm	0032 MainHall CO2		
Room 0032 Main Hall Temp	Room air temperature sensor	Centigrade	0032 MainHall Temp		
Room 0042 YR6 Classroom CO2	CO2	ppm	0042 YR6 ClassRM CO2		
Room 0042 YR6 Classroom Temp	Room air temperature sensor	Centigrade	0042 YR6 ClassRM Temp		
Room 0047 Science Classroom CO2	CO2	ppm	0047 Science ClassRM CO2		
Room 0047 Science Classroom Temp	Room air temperature sensor	Centigrade	0047 Science ClassRM Temp		
Room 0051 Workshop CO2	CO2	ppm	0051 Workshop CO2		
Room 0051 Workshop Temp	Room air temperature sensor	Centigrade	0051 Workshop Temp		
Room 0054 Food Classroom CO2	CO2	ppm	0054 Food ClassRM CO2		
Room 0054 Food Classroom Temp	Room air temperature sensor	Centigrade	0054 Food ClassRM Temp		
Room 0057 ART Classroom CO2	CO2	ppm	0057 ART ClassRM CO2		
Room 0057 ART Classroom Temp	Room air temperature sensor	Centigrade	0057 ART ClassRM Temp		
Room 0065 ICT Classroom CO2	CO2	ppm	0065 ICT ClassRM CO2		
Room 0065 ICT Classroom Temp	Room air temperature sensor	Centigrade	0065 ICT ClassRM Temp		
Room 0068 General Classroom CO2	CO2	ppm	0068 GEN ClassRM CO2		
Room 0068 General Classroom Temp	Room air temperature sensor	Centigrade	0068 GEN ClassRM Temp		
Room 0071 Classroom CO2	CO2	ppm	0071 ClassRM CO2		
Room 0071 General Classroom Temp	Room air temperature sensor	Centigrade	0071 GEN ClassRM Temp		
Room 0074 Classroom CO2	CO2	ppm	0074 ClassRM CO2		
Room 0074 General Classroom Temp	Room air temperature sensor	Centigrade	0074 GEN ClassRM Temp		
Room 0080 General Classroom CO2	CO2	ppm	0080 GEN ClassRM CO2		
Room 0080 General Classroom Temp	Room air temperature sensor	Centigrade	0080 GEN ClassRM Temp		
Room 0083 General Classroom CO2	CO2	ppm	0083 GEN ClassRM CO2		
Room 0083 General Classroom Temp	Room air temperature sensor	Centigrade	0083 GEN ClassRM Temp		
Room 0086 General Classroom CO2	CO2	ppm	0086 GEN ClassRM CO2		
Room 0086 General Classroom Temp	Room air temperature sensor	Centigrade	0086 GEN ClassRM Temp		